Компаниям, которые работают в онлайне и в офлайне, важно иметь возможность атрибутировать покупки в физических магазинах и понимать, как на них влияет продвижение в сети. Например, пользователь мог увидеть рекламу в интернете, изучить отзывы, прийти в офлайн-магазин и совершить покупку. Оплата при этом может проводиться как при оформлении, так и по факту получения покупки.
Отследить влияние онлайн-рекламы, особенно медийной, на офлайн-конверсии позволяет оценка Post-View офлайн-конверсий на основе CRM-данных рекламодателя. Инструмент анализирует, показывалась ли реклама пользователю, совершившему конверсию. При этом целевые действия могут быть не только в онлайне, но и в офлайне. Например, в myTarget можно загружать в рекламный кабинет CRM-данные с информацией о визитах в офлайн-магазины и покупках в CSV-файле, чтобы система могла оценить, кто из пришедших клиентов контактировал с рекламой в сети. Модель позволяет связать онлайн и офлайн и построить сквозную аналитику.
Дополнительная сложность возникает, когда бизнесу необходимо учитывать возвраты. С ними автоматизированные и аналитические сервисы, например, Google Analytics, справиться не могут. Такие сервисы не редактируют данные ретроспективно – если конверсия была совершена в августе, а возврат произошел в октябре, то в отчете за август отмена не будет отображена. Это приведет к тому, что итоговый доход будет отличаться от данных из вашей CRM-базы.
В компаниях, которые работают и в онлайне, и в офлайне, достаточно длинная цепочка взаимодействия клиента с рекламой до момента покупки. Именно поэтому важно отслеживать не только каждый этап этой цепочки, но и взаимное влияние каналов друг на друга. Например, атрибуция Last Non-Direct Click не позволит учитывать контакты до последнего шага. Если рекламодатель в течение двух недель взаимодействовал с пользователем с помощью ремаркетинга, а затем отправил email-рассылку, с которой человек перешел на сайт и совершил покупку, сложно оценить, сработало бы письмо без ремаркетинга или нет. В миксах «ремаркетинг – ремаркетинг – email – ремаркетинг» или «email – email – медийная реклама», или «ремаркетинг – медийная реклама – видеореклама – email» важно понимать, какой из каналов в большей степени повлиял на конверсию.
Кроме того, омниканальный бизнес нацелен на удержание клиента – таким компаниям важно оценивать не только первую покупку и канал, из которого пришел пользователь, но и повторные покупки. В аналитических сервисах оценка первых и повторных покупок происходит по каналу трафика. Проанализировать данные на уровне пользователя — например, оценить стоимость привлечения конкретного клиента и возврат инвестиций — не получится.